Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Extracell Vesicles ; 13(4): e12422, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38602306

RESUMO

Human milk contains extracellular vesicles (HMEVs). Pre-clinical models suggest that HMEVs may enhance intestinal function and limit inflammation; however, it is unknown if HMEVs or their cargo survive neonatal human digestion. This limits the ability to leverage HMEV cargo as additives to infant nutrition or as therapeutics. This study aimed to develop an EV isolation pipeline from small volumes of human milk and neonatal intestinal contents after milk feeding (digesta) to address the hypothesis that HMEVs survive in vivo neonatal digestion to be taken up intestinal epithelial cells (IECs). Digesta was collected from nasoduodenal sampling tubes or ostomies. EVs were isolated from raw and pasteurized human milk and digesta by density-gradient ultracentrifugation following two-step skimming, acid precipitation of caseins, and multi-step filtration. EVs were validated by electron microscopy, western blotting, nanoparticle tracking analysis, resistive pulse sensing, and super-resolution microscopy. EV uptake was tested in human neonatal enteroids. HMEVs and digesta EVs (dEVs) show typical EV morphology and are enriched in CD81 and CD9, but depleted of ß-casein and lactalbumin. HMEV and some dEV fractions contain mammary gland-derived protein BTN1A1. Neonatal human enteroids rapidly take up dEVs in part via clathrin-mediated endocytosis. Our data suggest that EVs can be isolated from digestive fluid and that these dEVs can be absorbed by IECs.


Assuntos
Líquidos Corporais , Vesículas Extracelulares , Recém-Nascido , Lactente , Humanos , Leite Humano/metabolismo , Vesículas Extracelulares/metabolismo , Caseínas/metabolismo
2.
bioRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38187651

RESUMO

Human milk contains extracellular vesicles (HMEVs). Pre-clinical models suggest that HMEVs may enhance intestinal function and limit inflammation; however, it is unknown if HMEVs or their cargo survive neonatal human digestion. This limits the ability to leverage HMEV cargo as additives to infant nutrition or as therapeutics. This study aimed to develop an EV isolation pipeline from small volumes of human milk and neonatal intestinal contents after milk feeding (digesta) to address the hypothesis that HMEVs survive in vivo neonatal digestion to be taken up intestinal epithelial cells (IECs). Digesta was collected from nasoduodenal sampling tubes or ostomies. EVs were isolated from raw and pasteurized human milk and digesta by density-gradient ultracentrifugation following two-step skimming, acid precipitation of caseins, and multi-step filtration. EVs were validated by electron microscopy, western blotting, nanoparticle tracking analysis, resistive pulse sensing, and super-resolution microscopy. EV uptake was tested in human neonatal enteroids. HMEVs and digesta EVs (dEVs) show typical EV morphology and are enriched in CD81 and CD9, but depleted of ß-casein and lactalbumin. HMEV and some dEV fractions contain mammary gland-derived protein BTN1A1. Neonatal human enteroids rapidly take up dEVs in part via clathrin-mediated endocytosis. Our data suggest that EVs can be isolated from digestive fluid and that these dEVs can be absorbed by IECs.

3.
Front Immunol ; 14: 1192936, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545496

RESUMO

Chronic undernutrition is a major cause of death for children under five, leaving survivors at risk for adverse long-term consequences. This review focuses on the role of nutrients in normal intestinal development and function, from the intestinal epithelium, to the closely-associated mucosal immune system and intestinal microbiota. We examine what is known about the impacts of undernutrition on intestinal physiology, with focus again on the same systems. We provide a discussion of existing animal models of undernutrition, and review the evidence demonstrating that correcting undernutrition alone does not fully ameliorate effects on intestinal function, the microbiome, or growth. We review efforts to treat undernutrition that incorporate data indicating that improved recovery is possible with interventions focused not only on delivery of sufficient energy, macronutrients, and micronutrients, but also on efforts to correct the abnormal intestinal microbiome that is a consequence of undernutrition. Understanding of the role of the intestinal microbiome in the undernourished state and correction of the phenotype is both complex and a subject that holds great potential to improve recovery. We conclude with critical unanswered questions in the field, including the need for greater mechanistic research, improved models for the impacts of undernourishment, and new interventions that incorporate recent research gains. This review highlights the importance of understanding the mechanistic effects of undernutrition on the intestinal ecosystem to better treat and improve long-term outcomes for survivors.


Assuntos
Desnutrição , Microbiota , Animais , Estado Nutricional , Intestinos , Mucosa Intestinal
5.
Semin Perinatol ; 47(1): 151690, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36581527

RESUMO

Human breast milk is the optimal nutrition for all infants and is comprised of many bioactive and immunomodulatory components. The components in human milk, such as probiotics, human milk oligosaccharides (HMOs), extracellular vesicles, peptides, immunoglobulins, growth factors, cytokines, and vitamins, play a critical role in guiding neonatal development beyond somatic growth. In this review, we will describe the bioactive factors in human milk and discuss how these factors shape neonatal immunity, the intestinal microbiome, intestinal development, and more from the inside out.


Assuntos
Microbioma Gastrointestinal , Leite Humano , Lactente , Recém-Nascido , Feminino , Criança , Humanos , Desenvolvimento Infantil , Oligossacarídeos , Estado Nutricional , Aleitamento Materno
6.
Am J Physiol Gastrointest Liver Physiol ; 323(6): G571-G585, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36194131

RESUMO

Colorectal cancer (CRC) is a leading cause of cancer-related death. There is an urgent need for new methods of early CRC detection and monitoring to improve patient outcomes. Extracellular vesicles (EVs) are secreted, lipid-bilayer bound, nanoparticles that carry biological cargo throughout the body and in turn exhibit cancer-related biomarker potential. RNA binding proteins (RBPs) are posttranscriptional regulators of gene expression that may provide a link between host cell gene expression and EV phenotypes. Insulin-like growth factor 2 RNA binding protein 1 (IGF2BP1/IMP1) is an RBP that is highly expressed in CRC with higher levels of expression correlating with poor prognosis. IMP1 binds and potently regulates tumor-associated transcripts that may impact CRC EV phenotypes. Our objective was to test whether IMP1 expression levels impact EV secretion and/or cargo. We used RNA sequencing, in vitro CRC cell lines, ex vivo colonoid models, and xenograft mice to test the hypothesis that IMP1 influences EV secretion and/or cargo in human CRC. Our data demonstrate that IMP1 modulates the RNA expression of transcripts associated with extracellular vesicle pathway regulation, but it has no effect on EV secretion levels in vitro or in vivo. Rather, IMP1 appears to affect EV regulation by directly entering EVs in a transformation-dependent manner. These findings suggest that IMP1 has the ability to shape EV cargo in human CRC, which could serve as a diagnostic/prognostic circulating tumor biomarker.NEW & NOTEWORTHY This work demonstrates that the RNA binding protein IGF2BP1/IMP1 alters the transcript profile of colorectal cancer cell (CRC) mRNAs from extracellular vesicle (EV) pathways. IMP1 does not alter EV production or secretion in vitro or in vivo, but rather enters CRC cells where it may further impact EV cargo. Our work shows that IMP1 has the ability to shape EV cargo in human CRC, which could serve as a diagnostic/prognostic circulating tumor biomarker.


Assuntos
Neoplasias Colorretais , Vesículas Extracelulares , Humanos , Camundongos , Animais , Vesículas Extracelulares/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA Mensageiro/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/patologia
7.
Cell Mol Gastroenterol Hepatol ; 14(2): 465-493, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35533983

RESUMO

BACKGROUND & AIMS: The intestine constantly interprets and adapts to complex combinations of dietary and microbial stimuli. However, the transcriptional strategies by which the intestinal epithelium integrates these coincident sources of information remain unresolved. We recently found that microbiota colonization suppresses epithelial activity of hepatocyte nuclear factor 4 nuclear receptor transcription factors, but their integrative regulation was unknown. METHODS: We compared adult mice reared germ-free or conventionalized with a microbiota either fed normally or after a single high-fat meal. Preparations of unsorted jejunal intestinal epithelial cells were queried using lipidomics and genome-wide assays for RNA sequencing and ChIP sequencing for the activating histone mark H3K27ac and hepatocyte nuclear factor 4 alpha. RESULTS: Analysis of lipid classes, genes, and regulatory regions identified distinct nutritional and microbial responses but also simultaneous influence of both stimuli. H3K27ac sites preferentially increased by high-fat meal in the presence of microbes neighbor lipid anabolism and proliferation genes, were previously identified intestinal stem cell regulatory regions, and were not hepatocyte nuclear factor 4 alpha targets. In contrast, H3K27ac sites preferentially increased by high-fat meal in the absence of microbes neighbor targets of the energy homeostasis regulator peroxisome proliferator activated receptor alpha, neighbored fatty acid oxidation genes, were previously identified enterocyte regulatory regions, and were hepatocyte factor 4 alpha bound. CONCLUSIONS: Hepatocyte factor 4 alpha supports a differentiated enterocyte and fatty acid oxidation program in germ-free mice, and that suppression of hepatocyte factor 4 alpha by the combination of microbes and high-fat meal may result in preferential activation of intestinal epithelial cell proliferation programs. This identifies potential transcriptional mechanisms for intestinal adaptation to multiple signals and how microbiota may modulate intestinal lipid absorption, epithelial cell renewal, and systemic energy balance.


Assuntos
Duodeno , Microbioma Gastrointestinal , Mucosa Intestinal , Animais , Duodeno/metabolismo , Duodeno/microbiologia , Ácidos Graxos/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Lipídeos , Camundongos
9.
JCI Insight ; 6(9)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33755595

RESUMO

Most colorectal cancers (CRCs) are moderately differentiated or well differentiated, a status that is preserved even in metastatic tumors. However, the molecular mechanisms underlying CRC differentiation remain to be elucidated. Herein, we unravel a potentially novel posttranscriptional regulatory mechanism via a LIN28B/CDX2 signaling axis that plays a critical role in mediating CRC differentiation. Owing to a large number of mRNA targets, the mRNA-binding protein LIN28B has diverse functions in development, metabolism, tissue regeneration, and tumorigenesis. Our RNA-binding protein IP (RIP) assay revealed that LIN28B directly binds CDX2 mRNA, which is a pivotal homeobox transcription factor in normal intestinal epithelial cell identity and differentiation. Furthermore, LIN28B overexpression resulted in enhanced CDX2 expression to promote differentiation in subcutaneous xenograft tumors generated from CRC cells and metastatic tumor colonization through mesenchymal-epithelial transition in CRC liver metastasis mouse models. A ChIP sequence for CDX2 identified α-methylacyl-CoA racemase (AMACR) as a potentially novel transcriptional target of CDX2 in the context of LIN28B overexpression. We also found that AMACR enhanced intestinal alkaline phosphatase activity, which is known as a key component of intestinal differentiation, through the upregulation of butyric acid. Overall, we demonstrated that LIN28B promotes CRC differentiation through the CDX2/AMACR axis.


Assuntos
Adenocarcinoma/genética , Fator de Transcrição CDX2/metabolismo , Diferenciação Celular/genética , Neoplasias Colorretais/genética , Proteínas de Ligação a RNA/genética , Racemases e Epimerases/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/secundário , Animais , Células CACO-2 , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Camundongos , Camundongos Transgênicos , Transplante de Neoplasias , Proteínas de Ligação a RNA/metabolismo
10.
Inflamm Bowel Dis ; 27(2): 256-267, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-32556182

RESUMO

BACKGROUND: Defining epithelial cell contributions to inflammatory bowel disease (IBD) is essential for the development of much needed therapies for barrier repair. Children with very early onset (VEO)-IBD have more extensive, severe, and refractory disease than older children and adults with IBD and, in some cases, have defective barrier function. We therefore evaluated functional and transcriptomic differences between pediatric IBD (VEO and older onset) and non-IBD epithelium using 3-dimensional, biopsy-derived organoids. METHODS: We measured growth efficiency relative to histopathological and clinical parameters in patient enteroid (ileum) and colonoid (colon) lines. We performed RNA-sequencing on patient colonoids and subsequent flow cytometry after multiple passages to evaluate changes that persisted in culture. RESULTS: Enteroids and colonoids from pediatric patients with IBD exhibited decreased growth associated with histological inflammation compared with non-IBD controls. We observed increased LYZ expression in colonoids from pediatric IBD patients, which has been reported previously in adult patients with IBD. We also observed upregulation of antigen presentation genes HLA-DRB1 and HLA-DRA, which persisted after prolonged passaging in patients with pediatric IBD. CONCLUSIONS: We present the first functional evaluation of enteroids and colonoids from patients with VEO-IBD and older onset pediatric IBD, a subset of which exhibits poor growth. Enhanced, persistent epithelial antigen presentation gene expression in patient colonoids supports the notion that epithelial cell-intrinsic differences may contribute to IBD pathogenesis.


Assuntos
Apresentação de Antígeno , Doenças Inflamatórias Intestinais , Organoides/crescimento & desenvolvimento , Criança , Humanos , Inflamação , Doenças Inflamatórias Intestinais/genética , Organoides/fisiopatologia , Regulação para Cima
11.
EMBO Rep ; 20(6)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061170

RESUMO

RNA binding proteins, including IMP1/IGF2BP1, are essential regulators of intestinal development and cancer. Imp1 hypomorphic mice exhibit gastrointestinal growth defects, yet the specific role for IMP1 in colon epithelial repair is unclear. Our prior work revealed that intestinal epithelial cell-specific Imp1 deletion (Imp1ΔIEC ) was associated with better regeneration in mice after irradiation. Here, we report increased IMP1 expression in patients with Crohn's disease and ulcerative colitis. We demonstrate that Imp1ΔIEC mice exhibit enhanced recovery following dextran sodium sulfate (DSS)-mediated colonic injury. Imp1ΔIEC mice exhibit Paneth cell granule changes, increased autophagy flux, and upregulation of Atg5. In silico and biochemical analyses revealed direct binding of IMP1 to MAP1LC3B, ATG3, and ATG5 transcripts. Genetic deletion of essential autophagy gene Atg7 in Imp1ΔIEC mice revealed increased sensitivity of double-mutant mice to colonic injury compared to control or Atg7 single mutant mice, suggesting a compensatory relationship between Imp1 and the autophagy pathway. The present study defines a novel interplay between IMP1 and autophagy, where IMP1 may be transiently induced during damage to modulate colonic epithelial cell responses to damage.


Assuntos
Mucosa Intestinal/metabolismo , Proteínas de Ligação a RNA/genética , Cicatrização/genética , Adulto , Idoso , Animais , Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Biomarcadores , Estudos de Casos e Controles , Linhagem Celular , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Colo , Doença de Crohn/genética , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Modelos Animais de Doenças , Feminino , Deleção de Genes , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Imuno-Histoquímica , Mucosa Intestinal/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Celulas de Paneth/metabolismo , Celulas de Paneth/patologia , Ligação Proteica , Biossíntese de Proteínas , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Adulto Jovem
12.
Carcinogenesis ; 40(4): 569-579, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-30407516

RESUMO

The RNA-binding protein insulin-like growth factor 2 mRNA binding protein 1 (IMP1) is overexpressed in colorectal cancer (CRC); however, evidence for a direct role for IMP1 in CRC metastasis is lacking. IMP1 is regulated by let-7 microRNA, which binds in the 3' untranslated region (UTR) of the transcript. The availability of binding sites is in part controlled by alternative polyadenylation, which determines 3' UTR length. Expression of the short 3' UTR transcript (lacking all microRNA sites) results in higher protein levels and is correlated with increased proliferation. We used in vitro and in vivo model systems to test the hypothesis that the short 3' UTR isoform of IMP1 promotes CRC metastasis. Herein we demonstrate that 3' UTR shortening increases IMP1 protein expression and that this in turn enhances the metastatic burden to the liver, whereas expression of the long isoform (full length 3' UTR) does not. Increased tumor burden results from elevated tumor surface area driven by cell proliferation and cell survival mechanisms. These processes are independent of classical apoptosis pathways. Moreover, we demonstrate the shifts toward the short isoform are associated with metastasis in patient populations where IMP1-long expression predominates. Overall, our work demonstrates that different IMP1 expression levels result in different functional outcomes in CRC metastasis and that targeting IMP1 may reduce tumor progression in some patients.


Assuntos
Regiões 3' não Traduzidas/genética , Proliferação de Células , Neoplasias Colorretais/patologia , Neoplasias Hepáticas/secundário , Proteínas de Ligação a RNA/genética , Animais , Apoptose , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Nus , Proteínas de Ligação a RNA/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Curr Colorectal Cancer Rep ; 14(2): 69-79, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30237756

RESUMO

PURPOSE OF REVIEW: Metastatic colorectal cancer (CRC) is a vexing clinical problem. In contrast to early stage disease, once CRC metastasizes to other organs, long-term survival is compromised. We seek to review the molecular pathogenesis, animal models, and functional genomics for an enhanced understanding of how CRC metastasizes and how this can be exploited therapeutically. RECENT FINDINGS: Mouse models may recapitulate certain aspects of metastatic human CRC and allow for studies to identify regulators of metastasis. Modulation of transcription factors, onco-proteins, or tumor suppressors have been identified to activate known metastatic pathways. CD44 variants, microRNAs and RNA binding proteins are emerging as metastatic modulators. SUMMARY: CRC metastasis is a multi-faceted and heterogeneous disease. Despite common pathways contributing to metastatic development, there are numerous variables that modulate metastatic signals in subsets of patients. It is paramount that studies continue to investigate metastatic drivers, enhancers and inhibitors in CRC to develop therapeutic targets and improve disease outcomes.

14.
Genes Dev ; 32(15-16): 1020-1034, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068703

RESUMO

RNA-binding proteins (RBPs) are expressed broadly during both development and malignant transformation, yet their mechanistic roles in epithelial homeostasis or as drivers of tumor initiation and progression are incompletely understood. Here we describe a novel interplay between RBPs LIN28B and IMP1 in intestinal epithelial cells. Ribosome profiling and RNA sequencing identified IMP1 as a principle node for gene expression regulation downstream from LIN28B In vitro and in vivo data demonstrate that epithelial IMP1 loss increases expression of WNT target genes and enhances LIN28B-mediated intestinal tumorigenesis, which was reversed when we overexpressed IMP1 independently in vivo. Furthermore, IMP1 loss in wild-type or LIN28B-overexpressing mice enhances the regenerative response to irradiation. Together, our data provide new evidence for the opposing effects of the LIN28B-IMP1 axis on post-transcriptional regulation of canonical WNT signaling, with implications in intestinal homeostasis, regeneration and tumorigenesis.


Assuntos
Carcinogênese , Regulação da Expressão Gênica , Mucosa Intestinal/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regulon , Via de Sinalização Wnt , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Humanos , Mucosa Intestinal/fisiologia , Camundongos , Camundongos Transgênicos , Oncogenes , Biossíntese de Proteínas , Proteínas de Ligação a RNA/fisiologia , Regeneração , Células-Tronco/metabolismo
15.
Aging (Albany NY) ; 9(8): 1898-1915, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28854151

RESUMO

Intestinal epithelial stem cells (IESCs) are critical to maintain intestinal epithelial function and homeostasis. We tested the hypothesis that aging promotes IESC dysfunction using old (18-22 months) and young (2-4 month) Sox9-EGFP IESC reporter mice. Different levels of Sox9-EGFP permit analyses of active IESC (Sox9-EGFPLow), activatable reserve IESC and enteroendocrine cells (Sox9-EGFPHigh), Sox9-EGFPSublow progenitors, and Sox9-EGFPNegative differentiated lineages. Crypt-villus morphology, cellular composition and apoptosis were measured by histology. IESC function was assessed by crypt culture, and proliferation by flow cytometry and histology. Main findings were confirmed in Lgr5-EGFP and Lgr5-LacZ mice. Aging-associated gene expression changes were analyzed by Fluidigm mRNA profiling. Crypts culture from old mice yielded fewer and less complex enteroids. Histology revealed increased villus height and Paneth cells per crypt in old mice. Old mice showed increased numbers and hyperproliferation of Sox9-EGFPLow IESC and Sox9-EGFPHigh cells. Cleaved caspase-3 staining demonstrated increased apoptotic cells in crypts and villi of old mice. Gene expression profiling revealed aging-associated changes in mRNAs associated with cell cycle, oxidative stress and apoptosis specifically in IESC. These findings provide new, direct evidence for aging associated IESC dysfunction, and define potential biomarkers and targets for translational studies to assess and maintain IESC function during aging.


Assuntos
Envelhecimento/patologia , Proliferação de Células , Células Epiteliais/patologia , Mucosa Intestinal/patologia , Jejuno/patologia , Células-Tronco/patologia , Fatores Etários , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Apoptose , Ciclo Celular , Linhagem da Célula , Enterócitos/metabolismo , Enterócitos/patologia , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Células Caliciformes/metabolismo , Células Caliciformes/patologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Homeostase , Mucosa Intestinal/metabolismo , Jejuno/metabolismo , Óperon Lac , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estresse Oxidativo , Celulas de Paneth/metabolismo , Celulas de Paneth/patologia , Fenótipo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais , Esferoides Celulares , Células-Tronco/metabolismo , Fatores de Tempo , Técnicas de Cultura de Tecidos
16.
Am J Physiol Gastrointest Liver Physiol ; 309(7): G578-89, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26251471

RESUMO

Current views suggest that apoptosis eliminates genetically damaged cells that may otherwise form tumors. Prior human studies link elevated insulin and reduced apoptosis to risk of colorectal adenomas. We hypothesized that hyperinsulinemia associated with obesity would lead to reduced colon epithelial cell (CEC) apoptosis after radiation and that this effect would be altered by deletion of the insulin-like growth factor (IGF) 1 receptor (IGF1R) or the insulin receptor (IR). Mice with villin-Cre-mediated IGF1R or IR deletion in CECs and floxed littermates were fed a high-fat diet to induce obesity and hyperinsulinemia or control low-fat chow. Mice were exposed to 5-Gy abdominal radiation to induce DNA damage and euthanized 4 h later for evaluation of apoptosis by localization of cleaved caspase-3. Obese mice exhibited decreased apoptosis of genetically damaged CECs. IGF1R deletion did not affect CEC apoptosis in lean or obese animals. In contrast, IR loss increased CEC apoptosis in both diet groups but did not prevent antiapoptotic effects of obesity. Levels of p53 protein were significantly reduced in CECs of obese mice with intact IR but increased in both lean and obese mice without IR. Levels of mRNAs encoding proapoptotic Perp and the cell cycle inhibitor Cdkn1b/p27 were reduced in CECs of obese mice and increased in lean mice lacking IR. Together, our studies provide novel evidence for antiapoptotic roles of obesity and IR, but not IGF1R, in colonic epithelium after DNA damage. However, neither IR nor IGF1R deletion prevented a reduction in radiation-induced CEC apoptosis during obesity and hyperinsulinemia.


Assuntos
Apoptose/efeitos da radiação , Colo/patologia , Mucosa Intestinal/metabolismo , Obesidade/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Animais , Western Blotting , Caspase 3 , Colo/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Lesões Experimentais por Radiação , Reação em Cadeia da Polimerase em Tempo Real , Receptor IGF Tipo 1/genética , Receptor de Insulina/genética
17.
Mol Cancer Res ; 13(11): 1478-86, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26194191

RESUMO

UNLABELLED: The colon tumor microenvironment is becoming increasingly recognized as a complex but central player in the development of many cancers. Previously, we identified an oncogenic role for the mRNA-binding protein IMP1 (IGF2BP1) in the epithelium during colon tumorigenesis. In the current study, we reveal the contribution of stromal IMP1 in the context of colitis-associated colon tumorigenesis. Interestingly, stromal deletion of Imp1 (Dermo1Cre;Imp1(LoxP/LoxP), or Imp1(ΔMes)) in the azoxymethane/dextran sodium sulfate (AOM/DSS) model of colitis-associated cancer resulted in increased tumor numbers of larger size and more advanced histologic grade than controls. In addition, Imp1(ΔMes) mice exhibited a global increase in protumorigenic microenvironment factors, including enhanced inflammation and stromal components. Evaluation of purified mesenchyme from AOM/DSS-treated Imp1(ΔMes) mice demonstrated an increase in hepatocyte growth factor (HGF), which has not been associated with regulation via IMP1. Genetic knockdown of Imp1 in human primary fibroblasts confirmed an increase in HGF with Imp1 loss, demonstrating a specific, cell-autonomous role for Imp1 loss to increase HGF expression. Taken together, these data demonstrate a novel tumor-suppressive role for IMP1 in colon stromal cells and underscore an exquisite, context-specific function for mRNA-binding proteins, such as IMP1, in disease states. IMPLICATIONS: The tumor-suppressive role of stromal IMP1 and its ability to modulate protumorigenic factors suggest that IMP1 status is important for the initiation and growth of epithelial tumors.


Assuntos
Proteínas de Ligação a RNA/metabolismo , Microambiente Tumoral , Animais , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Deleção de Genes , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Mesoderma/metabolismo , Camundongos , Proteínas de Ligação a RNA/genética , Células Estromais/metabolismo
18.
Am J Physiol Gastrointest Liver Physiol ; 308(2): G100-11, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25394660

RESUMO

The insulin receptor (IR) regulates nutrient uptake and utilization in multiple organs, but its role in the intestinal epithelium is not defined. This study developed a mouse model with villin-Cre (VC) recombinase-mediated intestinal epithelial cell (IEC)-specific IR deletion (VC-IR(Δ/Δ)) and littermate controls with floxed, but intact, IR (IR(fl/fl)) to define in vivo roles of IEC-IR in mice fed chow or high-fat diet (HFD). We hypothesized that loss of IEC-IR would alter intestinal growth, biomarkers of intestinal epithelial stem cells (IESC) or other lineages, body weight, adiposity, and glucose or lipid handling. In lean, chow-fed mice, IEC-IR deletion did not affect body or fat mass, plasma glucose, or IEC proliferation. In chow-fed VC-IR(Δ/Δ) mice, mRNA levels of the Paneth cell marker lysozyme (Lyz) were decreased, but markers of other differentiated lineages were unchanged. During HFD-induced obesity, IR(fl/fl) and VC-IR(Δ/Δ) mice exhibited similar increases in body and fat mass, plasma insulin, mRNAs encoding several lipid-handling proteins, a decrease in Paneth cell number, and impaired glucose tolerance. In IR(fl/fl) mice, HFD-induced obesity increased circulating cholesterol; numbers of chromogranin A (CHGA)-positive enteroendocrine cells (EEC); and mRNAs encoding Chga, glucose-dependent insulinotrophic peptide (Gip), glucagon (Gcg), Lyz, IESC biomarkers, and the enterocyte cholesterol transporter Scarb1. All these effects were attenuated or lost in VC-IR(Δ/Δ) mice. These results demonstrate that IEC-IR is not required for normal growth of the intestinal epithelium in lean adult mice. However, our findings provide novel evidence that, during HFD-induced obesity, IEC-IR contributes to increases in EEC, plasma cholesterol, and increased expression of Scarb1 or IESC-, EEC-, and Paneth cell-derived mRNAs.


Assuntos
Colesterol/metabolismo , Dieta Hiperlipídica , Células Enteroendócrinas/metabolismo , Intestinos/patologia , Celulas de Paneth/metabolismo , Receptor de Insulina/metabolismo , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Polipeptídeo Inibidor Gástrico/metabolismo , Insulina/sangue , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Transgênicos , Obesidade/metabolismo , RNA Mensageiro/metabolismo
19.
Cancer Epidemiol Biomarkers Prev ; 23(10): 2093-100, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25017244

RESUMO

BACKGROUND: Hyperinsulinemia resulting from obesity and insulin resistance is associated with increased risk of many cancers, but the biology underlying this risk is unclear. We hypothesized that increased mRNA levels of the insulin-like growth factor I receptor (IGFIR) versus the insulin receptor (IR) or elevated ratio of IR-A:IR-B isoforms in normal rectal mucosa would predict adenoma risk, particularly in individuals with high body mass index (BMI) or plasma insulin. METHODS: Biopsies from normal rectal mucosa were obtained from consenting patients undergoing routine colonoscopy at University of North Carolina Hospitals (Chapel Hill, NC). Subjects with colorectal adenomas were classified as cases (n = 100) and were matched to adenoma-free controls (n = 98) based on age, sex, and BMI. IGFIR and IR mRNA levels were assessed by qRT-PCR, and IR-A:IR-B mRNA ratios by standard PCR. Plasma insulin and crypt apoptosis were measured by ELISA and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), respectively. Logistic regression models examined relationships between receptor mRNAs, BMI, plasma insulin, and adenoma risk. RESULTS: Unexpectedly, cases were significantly more likely to have lower IGFIR mRNA levels than controls. No overall differences in total IR mRNA or IR-A:IR-B ratios were observed between cases and controls. Interestingly, in patients with high plasma insulin, increased IR-A:IR-B ratio was associated with increased likelihood of having adenomas. CONCLUSIONS: Our work shows novel findings that reduced IGFIR mRNA and, during high plasma insulin, increased IR-A:IR-B ratios in normal rectal mucosa are associated with colorectal adenoma risk. IMPACT: Our work provides evidence supporting a link between IGFIR and IR isoform expression levels and colorectal adenoma risk.


Assuntos
Adenoma/metabolismo , Neoplasias Colorretais/metabolismo , Receptor IGF Tipo 1/biossíntese , Receptor de Insulina/biossíntese , Adenoma/patologia , Apoptose , Neoplasias Colorretais/patologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Marcação In Situ das Extremidades Cortadas , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Isoformas de Proteínas , RNA Mensageiro
20.
J Cell Sci ; 126(Pt 24): 5645-56, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24127567

RESUMO

Despite evidence for the impact of insulin on intestinal epithelial physiology and pathophysiology, the expression patterns, roles, and regulation of insulin receptor (IR) and IR isoforms in the intestinal epithelium are not well characterized. IR-A is thought to mediate the proliferative effects of insulin or insulin growth factors (IGFs) in fetal or cancer cells. IR-B is considered to be the metabolic receptor for insulin in specialized tissues. This study used a novel Sox9-EGFP reporter mouse that permits isolation of intestinal epithelial stem cells (IESCs), progenitors, enteroendocrine cells and differentiated lineages, the Apc(Min/+) mouse model of precancerous adenoma and normal human intestinal and colorectal cancer (CRC) cell lines. We tested the hypothesis that there is differential expression of IR-A or IR-B in stem and tumor cells versus differentiated intestinal epithelial cells (IECs) and that IR-B impacts cell proliferation. Our findings provide evidence that IR-B expression is significantly lower in highly proliferative IESCs and progenitor cells versus post-mitotic, differentiated IECs and in subconfluent and undifferentiated versus differentiated Caco-2 cells. IR-B is also reduced in Apc(Min/+) tumors and highly tumorigenic CRC cells. These differences in IR-B were accompanied by altered levels of mRNAs encoding muscleblind-like 2 (MBNL2), a known regulator of IR alternative splicing. Forced IR-B expression in subconfluent and undifferentiated Caco-2 cells reduced proliferation and increased biomarkers of differentiation. Our findings indicate that the impact of insulin on different cell types in the intestinal epithelium might differ depending on relative IR-B IR-A expression levels and provide new evidence for the roles of IR-B to limit proliferation of CRC cells.


Assuntos
Proliferação de Células , Neoplasias Colorretais/metabolismo , Receptor de Insulina/metabolismo , Células-Tronco/metabolismo , Animais , Células CACO-2 , Diferenciação Celular , Replicação do DNA , Expressão Gênica , Humanos , Mucosa Intestinal/metabolismo , Camundongos , Fenótipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptor de Insulina/genética , Transdução de Sinais , Proteína da Zônula de Oclusão-1/metabolismo , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...